15 base station 910, and the angular displacement value (θ) is used to identify the point along this circle where mobile station 920 is located. This calculation may be performed either in base station 910 or the cellular system's switching center. A map matching table (as described above) may also be used to enhance the accuracy of the position determination made by system 900. Again, although systems 800 and 900 as described above have been implemented as part of a spread spectrum or CDMA cellular system, it will be understood by those skilled in the art that the steps of these systems may be implemented in connection with other modulation systems such as, for example, time division multiple access modulation systems, in order to determine the position of mobile stations operating within such systems. Referring now to FIGS. 10 and 10A, there is shown the operation of a mobile radio positioning system 1000 wherein each cell in the cellular system has an RF channel that is dedicated for positioning uses and unavailable for voice communication, in accordance with a preferred embodiment of the present invention. System 1000 is preferably implemented in connection with a CDMA cellular system in which each cell has a plurality of N (where N is an integer greater two) RF traffic channels, each of which has the capacity to support voice communications between a CDMA base station and a CDMA mobile station. In each cell, one of the N traffic channels is designated as a dedicated positioning channel that is normally unavailable for transmitting telephone voice information signals to mobile stations within the cell. As a result of this designated positioning channel, the CDMA base station associated with each cell in the system will have N-1 normal RF traffic channels that are available to support voice communications between the base station and a CDMA mobile station, and a single RF unavailable for supporting such voice communications. In the preferred embodiment of the present invention, the dedicated positioning channels are selected for the various cells in the system such that neighboring cells have different RF channels designated as their dedicated positioning chan- 40 system's switching center. nels. Referring still to FIGS. 10 and 10A, system 1000 is initially invoked in step 1005 when a mobile station is communicating with a close-by base station (or first base with the first base station. When the mobile station is in such communication with the first base station, the first base station performs a round trip time measurement which represents the time it takes for a radio signal to propagate the mobile station back to the first base station. This round trip time measurement thus places the mobile station on a circle centered about the first base station. Next, in step 1010, the system attempts to perform a timing measurement between the mobile station and a 55 neighboring base station (or second base station). In step 1010, this measurement is attempted while the mobile station is operating on a normal RF traffic channel associated with the first base station. The timing measurement made in step 1010 may consist of a round trip signal propagation 60 time measurement between the mobile station and the second base station. Alternatively, the timing measurement which is attempted in step 1010 may correspond to the time difference at which the signal from the mobile station is respectively received at the first and second base stations. In 65 the event that the system was able to successful perform such timing measurements in step 1010, processing pro16 ceeds to step 1035, where the system determines the position of the mobile station based on the timing measurements made in steps 1005 and 1010. More particularly, the system identifies one or more intersections between the circular line of position determined in step 1005 and the circular (or hyperbolic) line of position determined in step 1010. If the system finds more than one such intersection, the exact position of the mobile station may be resolved by using a sector antenna at one of the base stations to select the intersection that represents the true position of the mobile station in the cellular system. If system 1000 was unable to successfully perform any timing measurement in step 1010 because, for example, the mobile radio station was operating at a power level that was 15 below the minimum power required for the second base station to properly receive the mobile station's signal, then processing proceeds to step 1020 where the mobile radio station is switched from a normal RF traffic channel to the dedicated RF positioning channel associated with the first base station. While the mobile station is operating on this dedicated RF positioning channel, the mobile station can clearly receive transmissions from neighboring base stations. In step 1025, while the mobile station is on the dedicated positioning channel and able to hear such neighboring base stations, the mobile station measures an arrival time difference of signals transmitted from neighboring base stations (or, alternatively, an arrival time difference between a signal transmitted from a neighboring base station and a signal transmitted from the first base station). As described above, this arrival time difference, together with the coordinates of the appropriate base stations, can be used to place the mobile station on a hyperbola between such base stations. In steps 1030, the mobile station is switched back to a normal RF traffic channel. Finally, in step 1035 (the channel that is a dedicated positioning channel that is 35 operation of which is described above), the system determines the position of the mobile station based on the timing measurements made in steps 1005 and 1025. The position calculations made in step 1035 may be performed either within one or more base stations or within the cellular Referring now to FIG. 11, there is shown the operation of a mobile radio positioning system 1100 where a base station transmitter turns itself off during predetermined periods to allow timing measurements to be made between the mobile station) on one of the normal RF traffic channels associated 45 radio and neighboring base stations, in accordance with a preferred embodiment of the present invention. System 1100 begins at step 1110, when a first CDMA base station is in normal voice communication with a CDMA mobile station in the coverage area of the first base station. Next, in step from the first base station to the mobile station and then from 50 1120, while the first base station continues to transmit to mobile stations within its coverage area, a mobile station being positioned attempts to locate itself using trilateration, i.e, by attempting to measure signal arrival time differences between the first base station and two other neighboring base stations. Such positioning will be unsuccessful if the mobile station being positioned cannot make the required timing measurements with neighboring base stations. In the event such positioning is unsuccessful, processing proceeds to step 1130, where the first base station turns off its transmitter for a single vocoder frame. While the first base station's transmitter is silent, the mobile station being positioned measures arrival time differences of signals received from at least three neighboring base stations in step 1140. In addition, in step 1160, while the first base station's transmitter is silent, other mobile stations within the coverage area of the first base station mask any transmission errors caused by the temporary interruption of transmissions from the first base